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Abstract
The linear thermal conductance of a quantum point contact displays a half-
plateau structure, almost flat regions appearing close to half-integer multiples of
the conductance quantum. This structure is investigated for the saddle-potential
model; its behaviour as a function of contact parameters is also investigated.
Half plateaus appear when the thermal energy is less than the subband separation
and greater than the energy scale over which the transmission probability for a
subband changes. The effect arises from the presence of a current node in the
energy-resolved heat current, an energy at which the current is zero. When the
transmission steps cross the current node as the gate voltage is varied, the heat
conductance remains constant, creating the half plateaus, and this happens only
for a certain temperature range. It is found that with increasing temperature the
half plateaus become wider and flatter, which makes them more pronounced. It
is also found that no half plateaus are present at the first step for any parameter
values, and this is tied to the effect that the current node is pushed above the
first step by the strong Seebeck potential.

1. Introduction

A large number of studies are carried out on the ballistic transport of electrons across quantum
point contacts defined by split-gate techniques on (Al, Ga)As heterostructures. An interesting
feature of this transport is the quantization of the electrical conductance [1, 2] in multiples of the
conductance quantum 2e2/h. This phenomenon is usually treated with the Landauer–Büttiker
formalism [3, 4], which has a transparent explanation for the quantization. For each transverse
mode in the contact, there is in effect a one-dimensional energy subband corresponding to that
mode within the contact region. When a subband minimum is sufficiently below the Fermi
level, the electrons in that band contribute one quantum 2e2/h to the electrical conductance
for adiabatically varying contact potentials, where the factor 2 comes from spin degeneracy.
As the voltage on the split gates is varied, the electrical conductance defines smooth plateaus,
occasionally changing from one plateau into the other in smooth steps whenever a subband
starts to be (un)occupied.
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The thermal conductance is also quantized [5–7] in the same way in integer multiples of

K0 = 2π2

3h
k2

Bθ,

where θ denotes the temperature. This quantization has exactly the same character as the
electrical conductance. The plateaus and steps appear at the same gate voltages. This can
simply be understood as a direct result of the Wiedemann–Franz law relating the thermal
conductance, K , to the electrical conductance, G, by

K

θG
= π2k2

B

3e2
,

which is seen to remain valid in quantum point contacts although small violations can be
observed around steps [5].

A remarkable difference between the curves of the two conductances as a function of gate
voltage is the appearance of half plateaus in the thermal conductance, i.e., almost flat regions
around half-integral multiples of K0, which was first noted by van Houten et al [6]. To the
authors’ knowledge, these additional plateaus have not yet been observed experimentally, and
there has been no detailed theoretical investigation about them. Similar half-plateau structures
have also been observed in the electrical conductance as a result of distinct causes. An applied
magnetic field that lifts the spin degeneracy is one possible cause. Also, for finite values of
the source–drain voltage (i.e., in the nonlinear regime) a new plateau structure develops at
the middle of the steps [8–11]. These plateaus increase in width for increasing source–drain
voltage and they eventually obliterate the normal quantization plateaus. However, the half
plateaus in the thermal conductance can occur under zero magnetic field and in the linear
regime. The purpose of this work is to analyse the half plateaus in the thermal conductance
at different temperatures and contact parameters. The theory is summarized in the following
section, and after that the conductances are investigated for different parameter values. Finally,
a physical explanation for the structure is provided.

2. Theory

If both sides of a quantum point contact have different potentials and temperatures, the charge
(I ) and the heat (Q̇) currents that pass through the contact can be expressed in the linear regime
as [12]

I = 2
e2

h
g0V + 2

(−e)kB

h
g1�θ, (1)

Q̇ = 2
(−e)kBθ

h
g1V + 2

k2
Bθ

h
g2�θ, (2)

where V is the electric potential difference, �θ is the temperature difference, and gp are
dimensionless quantities defined as

gp =
∫

dx x p(− f ′(x))T (µ + xkBθ), (p = 0, 1, 2), (3)

where µ is the chemical potential, f (x) = 1/(1 + ex) is the Fermi–Dirac distribution function,
and T (E) is the sum of the transmission probabilities at energy E . In other words,

T (E) =
∑

n

Tn(E),

where Tn(E) is the transmission probability of an electron incident in mode n and at the
energy E .
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Figure 1. (a) The electrical conductance (dotted) in units of 2e2/h and the thermal conductance
(solid) in units of K0 plotted as a function of the chemical potential. The curves are for (from
bottom to top) ωy/ωx = 1, 3, 10, 30, 100 and 300 and kBθ/h̄ωy = 0.05. The different curves are
shifted vertically for the sake of clarity. (b) The derivative of the thermal conductance (in units of
K0/h̄ωy) for the same parameter values. The ratio ωy/ωx increases from the bottom to the top,
and the different curves are shifted vertically by two units.

The electrical conductance, which is measured at isothermal conditions, and the thermal
conductance, which is measured at zero electrical current (I = 0), are respectively given by

G = 2e2

h
g0, (4)

K = 2k2
Bθ

h

(
g2 − g2

1

g0

)
. (5)

For calculating the conductances, the saddle potential model [13] is used, where the
potential energy around the contact is expressed as

V (x, y) = V0 − 1
2 mω2

x x2 + 1
2 mω2

y y2, (6)

where V0 refers to the value of the constriction potential at the saddle point, x and y correspond
to the longitudinal and transverse directions respectively, and curvatures of the potential are
expressed in terms of the frequencies ωy and ωx . The transmission probabilities for this
potential have been calculated as [14, 15]

Tn(E) =
(

1 + exp

(
− 2π

h̄ωx
(E − En)

))−1

for n = 0, 1, 2, . . ., where En = V0 + h̄ωy(n + 1/2). The energy scales for this problem are
the subband separation, ET = h̄ωy , and the energy range for a step EL ≈ h̄ωx . Physically,
a smaller h̄ωx implies that the contact is longer, which results in rapid changes of tunnelling
probability with electron energy.

3. Results and discussion

The electrical and thermal conductances are evaluated numerically and plotted in figure 1(a)
for different values of the ωy/ωx ratio. For large values of ωx (short contacts) both quantities
follow the same curve. But when ωx becomes smaller (longer contacts), half plateaus in the
thermal conductance start appearing, except in the first step. The development of the half
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Figure 2. (a) The electrical conductance (dotted) in units of 2e2/h and thermal conductance (solid)
in units of K0 plotted as a function of the chemical potential. The curves are obtained for (from bot-
tom to top) kBθ/h̄ωy = 0.01, 0.03, 0.06, 0.1, 0.15 and 0.2 and ωy/ωx = 3. The different curves are
shifted vertically for the sake of clarity. (b) The derivative of the thermal conductance with respect
to chemical potential (in units of K0/h̄ωy) for the same parameter values. The different curves are
shifted vertically by two units for clarity, and the temperature increases from the bottom to the top.

plateaus can be seen more clearly in the derivative of the thermal conductance with respect to
the chemical potential, which is shown in figure 1(b). For large values of ωx , the derivative
displays only a single peak at each step. When ωx is decreased, the peaks first split into
two, indicating the development of a flatter structure. At smaller values of ωx , the derivative in
between the peaks decreases somewhat, indicating that the structure in the thermal conductance
is almost flat. It can be seen from the figures that the widths of these plateaus do not change
as ωx is lowered further.

The appearance of the half-plateau structure can also be seen for increasing temperature,as
shown in figure 2. At low temperatures, both conductances follow the same curve as a function
of the chemical potential. However, as the temperature is increased, a half-plateau structure
becomes apparent for the thermal conductance. When the temperature is increased further,
the half plateaus become wider and eventually wipe out the integer plateaus. It can be verified
that the width of the secondary plateaus are proportional to the temperature. The obliteration
of the integer plateaus becomes inevitable as kBθ becomes comparable to ET = h̄ωy . It is
interesting to observe that in this parameter range, although the integer plateaus are wiped out,
the half-plateau structure is still distinguishable. This can be seen more clearly in the derivative
of the thermal conductance in figure 2(b).

The most relevant quantity determining the presence or the absence of the half plateaus
appears to be the kBθ/EL ratio. Since, for the saddle-potential model, all steps have the same
value for EL, half plateaus develop concurrently in all steps for a certain range of values of this
ratio. There are four different regimes with rough boundaries that can be distinguished in this
model. A few representative plots belonging to some of these regimes are shown in figure 3.

(1) In the low temperature regime where kBθ/h̄ωx � 0.08, there are no half plateaus.
Moreover, the derivative ∂K/∂µ has only a single peak at the steps.

(2) In the intermediate temperature regime where 0.08 � kBθ/h̄ωx � 0.4, a double-peak
structure develops in the derivative ∂K/∂µ. This is the parameter range where a structure
with a smaller slope appears around the middle of the steps in the K versus µ graph. With
increasing temperature, that slope goes down, making the graph of K have an almost flat
shape at the high end of this regime.
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Figure 3. (a) The thermal conductance, K , and (b) its derivative, ∂K/∂µ, around the second step
(the step between n = 1 and 2 plateaus) for different values of the kBθ/h̄ωx ratio, indicated on the
graphs.

(3) In the high temperature regime where 0.4h̄ωx � kBθ � h̄ωy , the derivative ∂K/∂µ

becomes much smaller around the middle of the steps (but does not vanish). As a result,
K appears to be almost constant with increasing µ. This is the parameter range where the
half plateaus are present. A surprising feature is that the half plateaus become much more
pronounced with increasing temperature as a result of the cooperation of two different
effects. First, the slope of the plateau region goes further down, and second, the width of
that region (i.e., the peak to peak distance in the derivative graph) increases. Since the
latter also implies that the widths of the integer plateaus decrease, half plateaus expand at
the expense of integer plateaus as the temperature is increased. Towards the high end of
this regime, however, neighbouring subbands start contributing to the conduction process,
causing the slope of the half plateaus to increase with increasing temperature (not shown).

(4) Finally, at very high temperatures where kBθ � h̄ωy , the contribution of neighbouring
subbands is significant, and as a result both integer and half-integer plateaus are wiped
out (not shown).

In order to understand the results summarized above, it is necessary to concentrate on the
g2 integral, which is the term in equation (5) that provides the most significant contribution to
K . The remaining term, g2

1/g0, is essential for including the effect of the Seebeck potential
developed across the contact, but its contribution is almost always negligible except around
the first step. For this reason, it is appropriate to investigate the derivative of g2 which can be
expressed as

∂g2

∂µ
=

∫
x2(− f ′(x))T ′(µ + xkBθ) dx .

Here the x2(− f ′(x)) factor has a symmetric double-peak shape centred at x = 0, with peaks
at x ≈ ±2.4 and each peak having a width of order unity. On the other hand, the T ′(µ+ xkBθ)

factor has a single peak at each conductance step with widths of the order EL/kBθ . The
derivative of g2 shows the same peak structure as the one of these factors that has the greatest
width. Therefore, when EL � kBθ , ∂g2/∂µ has a double-peak structure at each step, implying
the presence of half plateaus, while at the opposite extreme, when EL � kBθ , it has only a
single peak. In the former case, the peak-to-peak distance is around �µ = 2 × 2.4kBθ , which
means that the widths of the half plateaus are proportional to the temperature.
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The slopes of the half plateaus can also be calculated approximately as follows. To simplify
the calculation, consider µ = En , which corresponds to the midpoint of the T = n to n + 1
transition step. Although the minimum of ∂K/∂µ is shifted to lower values of µ as can be
seen in figure 3(b), the derivative at the midpoints is sufficient for a rough representative value.
Ignoring all other steps for simplicity, which amounts to the approximation h̄ωy � kBθ , one
can obtain

∂g2

∂µ
= 2π

h̄ωx

∫
x2(− f ′(x))(− f ′(λx)) dx = 2π

h̄ωx
h(λ),

where λ = 2πkBθ/h̄ωx . A limiting value at high temperatures, kBθ � h̄ωx , can be obtained
by employing the relation

h(λ) = 1

λ3
h

(
1

λ

)
,

as h(λ) ≈ h(0)/λ3, resulting in the following:

∂g2

∂µ
≈ 1

48

(h̄ωx )
2

(kBθ)3
.

To be complete, the contribution of the terms arising from the Seebeck effect has to be included
as well. With a similar analysis it can be found that

1

K0

∂K

∂µ
≈ 1

16π2

(h̄ωx)
2

(kBθ)3
+

3 ln2 2

4π2

1

(n + 1/2)2

1

kBθ
.

The restriction h̄ωy � kBθ � h̄ωx and the fact that it gives the slope of only one point on a half
plateau makes this expression of limited usefulness for practical cases. The only conclusion
that should be drawn from this expression is that in the high-temperature regime where the half
plateaus are present, the slope tends to get smaller as the temperature is raised, and it is inversely
proportional to the temperature at best. Note that this is very large compared to the slopes of
the integer plateaus, which have an exponential dependence on inverse temperature. The main
differences between the two types of plateaus comes to light with this result. Half plateaus
may not be considered completely flat, but they tend to become flatter as the temperature is
raised. In contrast, integer plateaus are considered completely flat when the transmission sum
function, T (E), is constant on the plateaus, and this gets better as the temperature is lowered.

Finally, the values of the heat conductance at half plateaus are found not to be exactly equal
to the half-integer multiples of the conductance quantum, as can be seen in figure 3(a). Starting
from the second step, half plateaus occur at conductance values K ≈ 1.40K0, 2.44K0, 3.46K0

and so on, approaching half-integer multiples of K0 as the number of conducting subbands
increases. Numerical calculations indicate that these values are independent of all parameters
of the problem. For this reason, in order to calculate the values of the conductance, the
ωx → 0 limit can be considered to simplify the problem. In this limit, T (E) has a step-
function dependence on E . When the chemical potential is chosen at the midpoint of T = n
to n + 1 transition step, the values

g0 = n + 1
2 , g1 = ln 2, g2 = π2

3

(
n +

1

2

)
,

can be found, which give the conductance values

K = K0

(
n +

1

2
− 3 ln2 2

π2

1

n + 1
2

)
n = 1, 2, . . . .

Numerically calculated values are consistent with this expression.
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Figure 4. Currents between a hot (top) and a cold conductor (middle). The transmission sum
function, T (E), and the energy-resolved heat current (shaded curve) are plotted below. The current
node, ECN, the energy at which the current is zero, is present due to the restriction that the total
particle current is zero. The relative shift of the Fermi levels due to the Seebeck effect is not shown.

Although the bimodal character of the kernel of the integral for g2 is responsible for the half
plateaus [6], there is a more straightforward explanation that involves uncomplicated physical
terms. As illustrated in figure 4, when a hot and a cold conductor are connected so that there is
no net electrical current between them, the distribution of electrons has the property that there
are more electrons above the Fermi level in the hot conductor compared to the cold one. As a
result, at these energies the particle current is from the hot to the cold conductor and they carry
more energy than the Fermi energy (hot current). On the other hand, the cold conductor has
more electrons with energy less than the Fermi level. For this reason these electrons flow from
the cold to the hot conductor and therefore they carry energy smaller than the Fermi energy
(cold current). Obviously both currents cause a net heat transfer from the hot to the cold
conductor. The important point is that in between them there is some energy where there is no
particle current. Note that there should inevitably be such a current node if the zero net electric
current condition is satisfied, which is always the case for heat conductance measurements.
Finally, when the gate voltage on the contact is changed, the transmission probabilities and
the currents are altered. The two relevant energy scales are EL, the energy range where the
transmission probability is modified for small changes in the gate voltage, and kBθ , the distance
between the hot and cold current energies. In the case EL � kBθ , when the modification region
crosses through the current node, the thermal current remains constant,creating the half-plateau
structure of the thermal conductance. It also follows from this argument that the width of the
plateaus is proportional to the temperature. In the opposite case, EL � kBθ , the current node
cannot be resolved from the current peaks, and no half plateaus appear.

In the argument above, the relative shift of the Fermi levels due to the Seebeck effect
has to be taken into the account, as it will move the current node away from the Fermi level.
However, as long as the node does not deviate too much, the crossing of the node with steps
is inevitable. This appears to be the case for the second and higher steps, but not for the first
one. In the case of the first step, only a negligible amount of current flows at electron energies
E with T (E) ≈ 0. The significant part of the current should flow at higher energies on the
T (E) ≈ 1 side of the step. The current node is necessarily pushed above the first step, and for
this reason crossing does not occur, which explains why there are no half plateaus at the first
step. In order to quantify this idea, the current node energy is calculated. Starting from the
current expression between energies E and E + dE in the linear regime,

( fhot(E) − fcold(E))T (E) dE =
(

∂ f (E)

∂µ
(−e)V +

∂ f (E)

∂θ
�θ

)
dE,
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Figure 5. The energy of the current node as a function of the chemical potential for the first step.
The effects of the other steps are ignored (i.e., ωy � ωx ). The curves are obtained for (from bottom
to top) kBθ/h̄ωx = 0.02, 0.08, 0.2, 0.4, 0.6 and 0.8. For the lowest curve, ECN is roughly equal to µ.

and using the Seebeck coefficient, V/�θ = kBg1/eg0, one can obtain the energy of the current
node as

ECN = µ + kBθ
g1

g0
.

Half plateaus occur when this energy and the subband minima cross, i.e., when ECN ∼ En . As
can be seen, the current node deviates from the Fermi level only by an amount proportional to
the Seebeck coefficient. It is well known that the Seebeck coefficient displays peaks at the steps
and minima at the plateaus; however, it is large and non-zero at and below the first step [6]. For
this reason, the deviation of the current node becomes very important in this last case, which
can be seen in figure 5, where ECN is plotted around the first step (n = 0). Although for low
temperatures (kBθ/h̄ωx = 0.02, 0.8 and 0.2) the current node does not deviate much from the
Fermi level and it indeed crosses the step (ECN becomes smaller than E0), these cases belong
to the low and intermediate temperature regimes where the half plateaus are not observed. For
high temperatures where there should have been half plateaus, however (kBθ/h̄ωx = 0.4, 0.6
and 0.8), the Seebeck effect pushes ECN significantly above the Fermi level, with the result
that ECN also lies above the subband minimum, E0. Therefore, no crossing occurs at energies
around the step, and for this reason there is no half plateau. Although it is found that ECN gets
smaller with decreasing µ and it eventually crosses E0, this happens for much lower values of
µ, so that practically there is no current flowing. In summary, for all parameter ranges there
cannot be any half plateau on the first step either because the temperature is too small so that
the current node is not resolved, or because the current node cannot cross the step. Indeed, no
unusual structure has been observed at this step either in K or in ∂K/∂µ for all parameters
that are investigated in this numerical study.

4. Conclusions

The formation and evolution of half-plateau structures in the thermal conductance are
described. They are the most significant aspect of the violation of the Wiedemann–Franz
law. The thermal distribution of energies of electrons contributing to a conduction process
has a single-peak shape for electrical conductance measurements. In contrast, for thermal
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conductance measurements, it has a double-peak shape. If the transmission probability of a
quantum point contact changes rapidly with electron energy, the conductances become sensitive
to the details of that distribution. The appearance of half plateaus in the thermal conductance
is the most important result of that sensitivity.

The half plateaus appear in the temperature range EL � kBθ � ET. For this reason, a
long contact with a smaller value of EL increases the chances of experimental observation.
Interestingly, half plateaus become more pronounced as the temperature is raised, as they get
wider and less steep at the low end of the temperature range above. Around kBθ ∼ ET, they
start disappearing together with the integer plateaus, but due to their widths they are a little
bit more distinguishable. The values of the conductance at the half plateaus are also evaluated
and it is observed that these values are fixed, independent of the parameters of the contact.
Although they are smaller than the exact half-integer multiples of the conductance quantum,
they tend to approach these values as the subband index increases. Finally, due to the strong
effect of the Seebeck potential developed across the contact, no half plateaus appear at the first
step for any parameter values.
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